17 research outputs found

    Structural, Morphological, Optical, and Room Temperature Magnetic Characterization on Pure and Sm-Doped ZnO Nanoparticles

    No full text
    Nano crystalline Zn1-xSmxO, (0.00 ≤ x ≤ 0.10), were prepared by wet chemical coprecipitation method. The effect of samarium doping on the structural, morphological, optical, and magnetic properties of ZnO nanoparticles was examined by X-ray powder diffraction (XRD), Transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Ultraviolet-visible spectroscopy (UV) and M-H magnetic hysteresis. XRD analysis showed the hexagonal wurtzite structure of ZnO. The absence of Sm2O3 as separate phase may be attributed to the complete dissolving of samarium in ZnO lattice. The lattice parameters (a and c) of Zn1-xSmxO were calculated and they fluctuated with the increase of Sm doping which indicated that the structure of ZnO was perturbed by the doping of Sm. The crystallite size was computed for all the samples using Debye-Scherrer’s method. The crystallite size decreased with the increase of Sm doping. TEM micrographs revealed that the size and the shape of the ZnO nanocomposites were changed by modifying the doping level of samarium. FTIR analysis spectrum confirmed the formation of ZnO phase and revealed a peak shift between pure and Sm-doped ZnO. The band gap energy and Urbach energy were calculated for Zn1-xSmxO, (0.00 ≤ x ≤ 0.10). The band energy gaps of pure and Sm doped ZnO samples are in the range 2.6–2.98 eV. M-H hysteresis inspection, at room temperature, showed that the pure ZnO exhibited a ferromagnetic behavior incorporated with diamagnetic and paramagnetic contributions. Ferromagnetic behavior was reduced for the doped samples with x=0.01 and x=0.04. The samples with x=0.02 and 0.06 ≤ x ≤ 0.10 tend to be superparamagnetic. The saturation magnetization (Ms), the coercivity (Hc), and the retentivity (Mr) were recorded for Zn1-xSmxO, (0.00 ≤ x ≤ 0.10)

    Mechanisms of Chitosan Nanoparticles in the Regulation of Cold Stress Resistance in Banana Plants

    No full text
    Exposure of banana plants, one of the most important tropical and subtropical plants, to low temperatures causes a severe drop in productivity, as they are sensitive to cold and do not have a strong defense system against chilling. Therefore, this study aimed to improve the growth and resistance to cold stress of banana plants using foliar treatments of chitosan nanoparticles (CH-NPs). CH-NPs produced by nanotechnology have been used to enhance tolerance and plant growth under different abiotic stresses, e.g., salinity and drought; however, there is little information available about their effects on banana plants under cold stress. In this study, banana plants were sprayed with four concentrations of CH-NPs—i.e., 0, 100, 200, and 400 mg L−1 of deionized water—and a group that had not been cold stressed or undergone CH-NP treatment was used as control. Banana plants (Musa acuminata var. Baxi) were grown in a growth chamber and exposed to cold stress (5 °C for 72 h). Foliar application of CH-NPs caused significant increases (p < 0.05) in most of the growth parameters and in the nutrient content of the banana plants. Spraying banana plants with CH-NPs (400 mg L−1) increased the fresh and dry weights by 14 and 41%, respectively, compared to the control. A positive correlation was found between the foliar application of CH-NPs, on the one hand, and photosynthesis pigments and antioxidant enzyme activities on the other. Spraying banana plants with CH-NPs decreased malondialdehyde (MDA) and reactive oxygen species (ROS), i.e., hydrogen peroxide (H2O2), hydroxyl radicals (•OH), and superoxide anions (O2•−). CH-NPs (400 mg L−1) decreased MDA, H2O2, •OH, and O2•− by 33, 33, 40, and 48%, respectively, compared to the unsprayed plants. We hypothesize that CH-NPs increase the efficiency of banana plants in the face of cold stress by reducing the accumulation of reactive oxygen species and, in consequence, the degree of oxidative stress. The accumulation of osmoprotectants (soluble carbohydrates, proline, and amino acids) contributed to enhancing the cold stress tolerance in the banana plants. Foliar application of CH-NPs can be used as a sustainable and economically feasible approach to achieving cold stress tolerance

    Effect of Manure and Compost on the Phytostabilization Potential of Heavy Metals by the Halophytic Plant Wavy-Leaved Saltbush

    No full text
    This study aimed to use organic fertilizers, e.g., compost and manures, and a halophytic plant [wavy-leaved saltbush (Atriplex undulata)] to remediate an agricultural soil polluted with toxic elements. Compost or manure (1% w/w) was added to a polluted soil in a pot trial. The application of the organic fertilizer, whether compost or manure, led to a significant improvement in the growth of the tested plant. From the physiological point of view, the application of organic fertilizers to polluted soil significantly increased the content of chlorophyll, carotenoid, and proline and, furthermore, led to a clear decrease in malondialdehyde (MDA) in the plant leaves. The highest significant values of organic carbon in the polluted soil (SOC) and cation exchange capacity (CEC) were found for the soil amended by compost and planted with wavy-leaved saltbush. Manure significantly reduced the soil pH to 7.52. Compost significantly decreased Zn, Cu, Cd, and Pb availability by 19, 8, 12, and 13%, respectively, compared to the control. On the other hand, manure increased Zn, Cu, Cd, and Pb availability by 8, 15, 18, and 14%, respectively. Compost and manure reduced the bioconcentration factor (BCF) and translocation factor (TF) of Cd and Pb. Compost was more effective in increasing the phytostabilization of toxic metals by wavy-leaved saltbush plants compared to manure. The results of the current study confirm that the application of non-decomposed organic fertilizers to polluted soils increases the risk of pollution of the ecosystem with toxic elements. The cultivation of contaminated soils with halophytic plants with the addition of aged organic materials, e. g., compost, is an effective strategy to reduce the spreading of toxic metals in the ecosystem, thus mitigating their introduction into the food chain
    corecore